توسعة مدلی مناسب بر مبنای شبکة عصبی مصنوعی و ماشین بردار پشتیبان برای پیش بینی بهنگام اکسیژن خواهی بیوشیمیایی 5 روزه

نویسندگان

علی اسکندری

روح اله نوری

حامد معراجی

امین کیاقادی

چکیده

محدودیت سنسورهای سخت افزاری برای اندازه گیری برخی مشخصه های کیفی آب مانند اکسیژن خواهی بیوشیمیایی 5 روزه (bod5) که از لحاظ زمانی هزینه بر هستند، تلاش ها را به سمت استفاده از سنسورهای نرم افزای برای پیش بینی بهنگام bod5 سوق داده است. هدف اصلی مقاله مذکور نیز توسعة سنسور نرم افزاری مناسب بر مبنای مدل های هوشمند شبکة عصبی مصنوعی (ann) و ماشین بردار پشتیبان (svm) برای تخمین بهنگام bod5 در رودخانة سفیدرود است. برای این منظور با قرار دادن bod5 به عنوان تابعی از دیگر متغیرهای کیفیت آب، مدل های مناسبی برای این موضوع با استفاده از دو مدل ann و svm توسعه داده شد. در توسعة مدل ann نقش توابع آموزش لونبرگ-مارکویت (lm)، پس انتشار ارتجاعی (rp) و گرادیان مزدوج مقیاس دار (scg) در بهینه کردن مشخصه های ann ارزیابی شد. همچنین برای بهینه کردن مشخصه های مدل svm از الگوریتم بهینه سازی جستجوی شبکة دو مرحله ای استفاده شد. نتایج این تحقیق مبین عملکرد برتر مدل ann با الگوریتم lm ( مدل ann (lm)) نسبت به دو الگوریتم دیگر بود. همچنین مدل svm نیز از عملکرد مناسبی در تخمین bod5 برخوردار بود، به طوری که مقدار ضریب همبستگی پیرسون برای این مدل در مرحله تست معادل 95/0 به دست آمد. در نهایت نیز بررسی های بیشتر برای ارزیابی یکی از دو مدل منتخب بر مبنای آماره نسبت تفاوت توسعه داده شده انجام پذیرفت که نتایج به دست آمده از این آماره حاکی از عملکرد برتر مدل svm نسبت به ann (lm) بود.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

توسعة مدلی مناسب بر مبنای شبکة عصبی مصنوعی و ماشین بردار پشتیبان برای پیش‌بینی بهنگام اکسیژن‌خواهی بیوشیمیایی 5 روزه

محدودیت سنسورهای سخت‌افزاری برای اندازه‌گیری برخی مشخصه‌های کیفی آب مانند اکسیژن‌خواهی بیوشیمیایی 5 روزه (BOD5) که از لحاظ زمانی هزینه‌بر هستند، تلاش‌ها را به سمت استفاده از سنسورهای نرم‌افزای برای پیش‌بینی بهنگام BOD5 سوق داده است. هدف اصلی مقاله مذکور نیز توسعة سنسور نرم‌افزاری مناسب بر مبنای مدل‌های هوشمند شبکة عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) برای تخمین بهنگام BOD5 در رودخانة س...

متن کامل

توانایی ماشین بردار پشتیبان در پیش بینی درماندگی مالی

درماندگی مالی پیش از ورشکستگی مالی رخ می‌دهد و پیش بینی موثر آن یک مسئله‌ی مهم و چالش برانگیز برای شرکت‌ها می‌باشد. تحقیق حاضر به پیش بینی درماندگی مالی در قالب مدل ماشین بردار پشتیبان و با استفاده از ترکیبات جریان نقد می‌پردازد. اهمیت ابزارهای داده کاوی، و توانایی این ابزارها در پیش بینی و طبقه بندی متغیرها، استفاده از آن‌ها را در مباحث مختلف مالی از جمله پیش بینی ورشکستگی، پیش بینی درماندگی م...

متن کامل

پیش بینی ماهانه جریان با استفاده از ماشین بردار پشتیبان بر مبنای آنالیز مؤلفه اصلی

هدف اصلی این تحقیق بررسی تأثیر انتخاب متغیرهای ورودی با استفاده از آنالیز مؤلفه اصلی (pca) بر عملکرد مدل ماشین بردار پشتیبان (svm) برای پیش بینی ماهانه دبی رودخانه بود. به این منظور ابتدا با استفاده از 18 متغیر ورودی به مدل svm، دبی جریان ماهانه پیش بینی شد. سپس با استفاده از pca تعداد متغیرهای ورودی به مدل svm از 18 متغیر به 5 مؤلفه کاهش یافت. در نهایت با استفاده از آماره توسعه یافته توسط نویس...

متن کامل

پیش بینی تبخیر- تعرق پتانسیل ماهانه با استفاده از مدل‌های ماشین بردار پشتیبان، برنامه‌ریزی ژنتیک و سیستم استنتاج عصبی – فازی

  چکیده علی­رغم اهمیت تبخیر-تعرق در برنامه­ریزی و مدیریت منابع آبی، وابستگی آن به مولفه­های اقلیمی از یک­سو و تاثیرپذیری این مولفه­ها از یکدیگر از سویی دیگر تخمین تبخیر-تعرق را دشوار ساخته است. به همین منظور، در این پژوهش، به بررسی امکان پیش­بینی این مولفه­ی مهم در استان سیستان و بلوچستان با استفاده از مدل‌های فراابتکاری از قبیل سیستم استنتاج عصبی – فازی، برن...

متن کامل

استفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان

پیش­بینی مقادیر جریان ورودی به سیستم منابع آب به­منظور آگاهی از شرایط آینده و برنامه­ریزی برای تخصیص بهینه منابع آب به بخش­های مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب می­باشد. هدف از پژوهش حاضر پیش­بینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از داده­های هیدرومتری ایستگاه قزاقلی با دوره­ آماری 47 سال و سه مدل سری­زمانی، شبکه عصبی و ماشین بردار پشت...

متن کامل

مدل‌سازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان

امروزه از بتن غلتکی در ساخت سد‌ها و روسازی راه‌ها استفاده می‌شود و طی سال‌های اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهم‌ترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری می‌باشد که افزایش آن می‌تواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیل‌دهنده آن سبب مشک...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
محیط شناسی

ناشر: دانشگاه تهران

ISSN 1025-8620

دوره 38

شماره 1 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023